Abstract

China covers approximately 10 million km2 and its crust has a complicated evolution of amalgamation, igneous activity, and sedimentation. Many studies address various aspects of China's crust, but few provide a simple geological and geophysical overview that is accessible to students and non-specialists; Filling this void is the objective of this review. China is characterized by thick (40–75 km) crust in the west due to Cenozoic collision with India and thin (30–40 km thick) crust in the east due to E–W Mesozoic-Cenozoic backarc extension. In contrast, overall crustal fabric trends E–W, defined by ophiolite belts and ultra-high pressure metamorphic rocks. This crustal fabric indicates that China has grown like a sandwich, with crust progressively added through Phanerozoic time by closing various E–W oriented Tethys oceans and seaways. In map view, China consists of five E–W trending tiers.Tier 1 is defined by the Central Asian Orogenic Belt (CAOB) along the northern margin of China, which consists of the Xing'an-Mongolia orogenic belt in the NE and the Tianshan Orogen in the NW. The CAOB formed during ~1000 Ma to ~250 Ma and is an accretionary orogen of mostly Paleozoic age that formed through closure of the Paleo-Asian Ocean and collision between the Siberian Craton and Archean-Paleoproterozoic crust to the south, which constitutes Tier 2. The CAOB has a strong aeromagnetic signature. Sediments from the Amur River show detrital U-Pb zircon age peaks at 2.8–2.3 Ga, 1.8 Ga, 450–250 Ma, and 200–100 Ma, which is expected for erosion of the Xing'an-Mongolia belt. Tier 1 igneous rocks are mainly Paleozoic except in the NE (Xing'an-Mongolia orogenic belt) and reflect subduction of the Paleo-Asian Ocean and associated accretion events, whereas Paleozoic CAOB crust in the east is overprinted by Jurassic and Cretaceous igneous rocks related to subduction of ancient Pacific basin oceanic lithosphere.Tier 2 includes the North China Craton (NCC) to the east and Tarim Craton to the west. The NCC contains the oldest rocks in China and is dominated by Archean and Paleoproterozoic ages. The extent of Archean rocks in the NCC may have been overestimated, as suggested by detrital zircons from the Yellow River, which flows across the craton, showing age peaks at 2.5–2.2 Ga, ~1.9 Ga, 500–400 Ma, and 300–200 Ma. The Tarim Craton is dominated by Palaeoproterozoic- Mesoproterozoic metamorphic strata along with a significant proportion of Neoproterozoic (~0.8 Ga) rocks. U-Pb ages for detrital zircons from Tarim River sediments reflect this basement geology, with strong peaks of Early and Late Paleozoic age, less abundant Neoproterozoic ages, and scattered ages back to the Archean. The NCC also was affected by abundant Mesozoic igneous activity with voluminous Early Cretaceous rocks that are associated with lithospheric thinning and decratonization.Tier 3 – also known as the Central China Orogen - is composed of the Sulu-Dabie-Qinling-Kunlun Orogen and records closing of an arm of Prototethys during the Ordovician to Silurian and Paleotethys during the Triassic. Tier 3 contains one of Earth's three giant ultra-high pressure (UHP) terranes with well-documented peak metamorphism of 650–850 °C and 4 GPa, indicating that some of these rocks were deeply subducted and then exhumed from depths of over 120 km in Triassic time. Tier 3 magmatism occurred in two episodes, early-middle Paleozoic and Triassic.Tier 4 contains blocks rifted from Gondwana, which include the Songpan-Ganzi, Qiangtang, and Lhasa terranes of Tibet in the west and the South China Block in the east. These terranes are marked by broad magnetic anomalies with a NE-SW trend along the Pacific margin, and a broad N–S trending anomaly between Tibet and South China. The South China Block is made up of Proterozoic and minor Archean crust of the Yangtze and Cathaysia blocks, which collided at 1.0–0.8 Ga to form the Jiangnan Orogen and the South China Block. Age spectra for detrital zircons from the Yangtze and Pearl Rivers shows major peaks at ~1.8 Ga, 900–800 Ma, ~400 Ma, and 300–150 Ma, which is consistent with the age of South China Block crust. Early-Middle Paleozoic igneous rocks are also found in South China. Mesozoic igneous rocks are widespread in both South China and Tibet and are related to subduction of the Paleo-Pacific and Tethyan oceanic plates, respectively. The accretion of Tibetan terranes to southern Eurasia occurred in the Mesozoic before collision with India at ~55 Ma.Tier 5 is represented by the island of Taiwan on the SE margin of China and marks where China crust continues to grow. Taiwan lies on a complex convergent boundary between the South China Block to the NW, the Philippine Sea Plate to the SE, and the Sunda Plate to the SW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call