Abstract

Urinary incontinence (UI) is a chronic, costly condition that impairs quality of life. To identify older women most at risk, the Medical Epidemiologic and Social Aspects of Aging (MESA) datasets were mined to create a set of questions that can reliably predict future UI. MESA data were collected during four household interviews at approximately 1 year intervals. Factors associated with becoming incontinent at the second interview (HH2) were identified using logistic regression (construction datasets). Based on p values and odds ratios, eight potential predictive factors with their 256 combinations and corresponding prediction probabilities formed the Continence Index. Its predictive and discriminatory capability was tested against the same cohort's outcome in the fourth survey (HH4 validation datasets). Sensitivity analysis, area under receiver operating characteristic (ROC) curve, predicted probabilities and confidence intervals were used to statistically validate the Continence Index. Body mass index, sneezing, post-partum UI, urinary frequency, mild UI, belief of developing UI in the future, difficulty stopping urinary stream and remembering names emerged as the strongest predictors of UI. The confidence intervals for prediction probabilities strongly agreed between construction and validation datasets. Calculated sensitivity, specificity, false-positive and false-negative values revealed that the areas under the ROCs (0.802 and 0.799) for the construction and validation datasets, respectively, indicated good discriminatory capabilities of the index as a predictor. The Continence Index will help identify older women most at risk of UI in order to apply targeted prevention strategies in women that are most likely to benefit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.