Abstract
We investigate learning of flexible robot locomotion controllers, i.e., the controllers should be applicable for multiple contexts, for example different walking speeds, various slopes of the terrain or other physical properties of the robot. In our experiments, contexts are desired walking linear speed of the gait. Current approaches for learning control parameters of biped locomotion controllers are typically only applicable for a single context. They can be used for a particular context, for example to learn a gait with highest speed, lowest energy consumption or a combination of both. The question of our research is, how can we obtain a flexible walking controller that controls the robot (near) optimally for many different contexts? We achieve the desired flexibility of the controller by applying the recently developed contextual relative entropy policy search(REPS) method which generalizes the robot walking controller for different contexts, where a context is described by a real valued vector. In this paper we also extend the contextual REPS algorithm to learn a non-linear policy instead of a linear policy over the contexts which call it RBF-REPS as it uses Radial Basis Functions. In order to validate our method, we perform three simulation experiments including a walking experiment using a simulated NAO humanoid robot. The robot learns a policy to choose the controller parameters for a continuous set of forward walking speeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.