Abstract

Language support for differentially private programming is both crucial and delicate. While elaborate program logics can be very expressive, type-system-based approaches using linear types tend to be more lightweight and amenable to automatic checking and inference, and in particular in the presence of higher-order programming. Since the seminal design of Fuzz , which is restricted to ϵ-differential privacy in its original design, significant progress has been made to support more advanced variants of differential privacy, like (ϵ, δ )-differential privacy. However, supporting these advanced privacy variants while also supporting higher-order programming in full has proven to be challenging. We present Jazz , a language and type system that uses linear types and latent contextual effects to support both advanced variants of differential privacy and higher-order programming. Latent contextual effects allow delaying the payment of effects for connectives such as products, sums, and functions, yielding advantages in terms of precision of the analysis and annotation burden upon elimination, as well as modularity. We formalize the core of Jazz , prove it sound for privacy via a logical relation for metric preservation, and illustrate its expressive power through a number of case studies drawn from the recent differential privacy literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.