Abstract
In computer science, contextual information can be used both to reduce computations and to increase accuracy. This paper discusses how it can be exploited for people surveillance in very cluttered environments in terms of perspective (i.e., weak scene calibration) and appearance of the objects of interest (i.e., relevance feedback on the training of a classifier). These techniques are applied to a pedestrian detector that uses a LogitBoost classifier, appropriately modified to work with covariance descriptors which lie on Riemannian manifolds. On each detected pedestrian, a similar classifier is employed to obtain a precise localization of the head. Two novelties on the algorithms are proposed in this case: polar image transformations to better exploit the circular feature of the head appearance and multispectral image derivatives that catch not only luminance but also chrominance variations. The complete approach has been tested on the surveillance of a construction site to detect workers that do not wear the hard hat: in such scenarios, the complexity and dynamics are very high, making pedestrian detection a real challenge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.