Abstract

Contextual emergence was originally proposed as an inter-level relation between different levels of description to describe an epistemic notion of emergence in physics. Here, we discuss the ontic extension of this relation to different domains or levels of physical reality using the properties of temperature and molecular shape (chirality) as detailed case studies. We emphasize the concepts of stability conditions and multiple realizability as key features of contextual emergence. Some broader implications contextual emergence has for the foundations of physics and cognitive and neural sciences are given in the concluding discussion. Relevant facts about algebras of observables are found in the appendices along with an abstract definition of Kubo-Martin-Schwinger states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.