Abstract

Neural responses in early visual cortex depend on stimulus context. One of the most well-established context-dependent effects is orientation-specific surround suppression: the neural response to a stimulus inside the receptive field of a neuron ("target") is suppressed when it is surrounded by iso-oriented compared with orthogonal stimuli ("flankers"). Despite the importance of orientation-specific surround suppression in potentially mediating a number of important perceptual effects, including saliency, contour integration, and orientation discrimination, the underlying neural mechanisms remain unknown. The suppressive signal could be inherited from precortical areas as early as the retina and thalamus, arise from local circuits through horizontal connections, or be fed back from higher visual cortex. Here, we show, using two different methodologies, measurements of scalp-recorded event-related potentials (ERPs) and behavioral contrast adaptation aftereffects in humans, that orientation-specific surround suppression is dependent on the surface structure in an image. When the target and flankers can be grouped on the same surface (independent of their distance), orientation-specific surround suppression occurs. When the target and flankers are on different surfaces (independent of their distance), orientation-specific surround suppression does not occur. Our results demonstrate a surprising role of high-level, global processes such as grouping in determining when contextual effects occur in early visual cortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call