Abstract
The cluster technique involves the creation of clusters and the selection of a cluster head (CH), which connects sensor nodes, known as cluster members (CM), to the CH. The CH receives data from the CM and collects data from sensor nodes, removing unnecessary data to conserve energy. It compresses the data and transmits them to base stations through multi-hop to reduce network load. Since CMs only communicate with their CH and have a limited range, they avoid redundant information. However, the CH's routing, compression, and aggregation functions consume power quickly compared to other protocols, like TPGF, LQEAR, MPRM, and P-LQCLR. To address energy usage in wireless sensor networks (WSNs), heterogeneous high-power nodes (HPN) are used to balance energy consumption. CHs close to the base station require effective algorithms for improvement. The cluster-based glow-worm optimization technique utilizes random clustering, distributed cluster leader selection, and link-based routing. The cluster head routes data to the next group leader, balancing energy utilization in the WSN. This algorithm reduces energy consumption through multi-hop communication, cluster construction, and cluster head election. The glow-worm optimization technique allows for faster convergence and improved multi-parameter selection. By combining these methods, a new routing scheme is proposed to extend the network's lifetime and balance energy in various environments. However, the proposed model consumes more energy than TPGF, and other protocols for packets with 0 or 1 retransmission count in a 260-node network. This is mainly due to the short INFO packets during the neighbor discovery period and the increased hop count of the proposed derived pathways. Herein, simulations are conducted to evaluate the technique's throughput and energy efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.