Abstract

Understanding protein function and developing molecular therapies require deciphering the cell types in which proteins act as well as the interactions between proteins. However, modeling protein interactions across biological contexts remains challenging for existing algorithms. Here, we introduce Pinnacle, a geometric deep learning approach that generates context-aware protein representations. Leveraging a multi-organ single-cell atlas, Pinnacle learns on contextualized protein interaction networks to produce 394,760 protein representations from 156 cell type contexts across 24 tissues. Pinnacle's embedding space reflects cellular and tissue organization, enabling zero-shot retrieval of the tissue hierarchy. Pretrained protein representations can be adapted for downstream tasks: enhancing 3D structure-based representations for resolving immuno-oncological protein interactions, and investigating drugs' effects across cell types. Pinnacle outperforms state-of-the-art models in nominating therapeutic targets for rheumatoid arthritis and inflammatory bowel diseases, and pinpoints cell type contexts with higher predictive capability than context-free models. Pinnacle's ability to adjust its outputs based on the context in which it operates paves way for large-scale context-specific predictions in biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.