Abstract
Context-sensitive probabilistic Boolean networks (PBNs) have been recently introduced as a paradigm for modeling genetic regulatory networks and have served as the main model for the application of intervention methods, including optimal control strategies, to favorably effect system dynamics. Since it is believed that the steady-state behavior of a context-sensitive PBN is indicative of the phenotype, it is important to study the alternation in the steady-state probability distribution due to any variations in the formulations of the context-sensitive PBNs. Furthermore, the huge computational complexity of the context-sensitive PBN model necessitates generation of size-reduction techniques and approximate methods for calculation of the steady-state probability distribution of context-sensitive PBNs. The goal of this paper is threefold: i) to study the effects of the various definitions of context-sensitive PBNs on the steady-state probability distributions and the downstream control policy design; ii) to propose a reduction technique that maintains the steady-state probability distribution; and iii) to provide an approximation method for calculating the steady-state probability distribution of a context-sensitive PBN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.