Abstract

A detailed neural model is presented of how the laminar circuits of visual cortical areas V1 and V2 implement context-sensitive binding processes such as perceptual grouping and attention. The model proposes how specific laminar circuits allow the responses of visual cortical neurons to be determined not only by the stimuli within their classical receptive fields, but also to be strongly influenced by stimuli in the extra-classical surround. This context-sensitive visual processing can greatly enhance the analysis of visual scenes, especially those containing targets that are low contrast, partially occluded, or crowded by distractors. We show how interactions of feedforward, feedback, and horizontal circuitry can implement several types of contextual processing simultaneously, using shared laminar circuits. In particular, we present computer simulations that suggest how top-down attention and preattentive perceptual grouping, two processes that are fundamental for visual binding, can interact, with attentional enhancement selectively propagating along groupings of both real and illusory contours, thereby showing how attention can selectively enhance object representations. These simulations also illustrate how attention may have a stronger facilitatory effect on low contrast than on high contrast stimuli, and how pop-out from orientation contrast may occur. The specific functional roles which the model proposes for the cortical layers allow several testable neurophysiological predictions to be made. The results presented here simulate only the boundary grouping system of adult cortical architecture. However, we also discuss how this model contributes to a larger neural theory of vision that suggests how intracortical and intercortical feedback help to stabilize development and learning within these cortical circuits. Although feedback plays a key role, fast feedforward processing is possible in response to unambiguous information. Model circuits are capable of synchronizing quickly, but context-sensitive persistence of previous events can influence how synchrony develops. Although these results focus on how the interblob cortical processing stream controls boundary grouping and attention, related modelling of the blob cortical processing stream suggests how visible surfaces are formed, and modelling of the motion stream suggests how transient responses to scenic changes can control long-range apparent motion and also attract spatial attention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.