Abstract

Face hallucination is a technique that reconstructs high-resolution (HR) faces from low-resolution (LR) faces, by using the prior knowledge learned from HR/LR face pairs. Most state-of-the-arts leverage position-patch prior knowledge of the human face to estimate the optimal representation coefficients for each image patch. However, they focus only the position information and usually ignore the context information of the image patch. In addition, when they are confronted with misalignment or the small sample size (SSS) problem, the hallucination performance is very poor. To this end, this paper incorporates the contextual information of the image patch and proposes a powerful and efficient context-patch-based face hallucination approach, namely, thresholding locality-constrained representation and reproducing learning (TLcR-RL). Under the context-patch-based framework, we advance a thresholding-based representation method to enhance the reconstruction accuracy and reduce the computational complexity. To further improve the performance of the proposed algorithm, we propose a promotion strategy called reproducing learning. By adding the estimated HR face to the training set, which can simulate the case that the HR version of the input LR face is present in the training set, it thus iteratively enhances the final hallucination result. Experiments demonstrate that the proposed TLcR-RL method achieves a substantial increase in the hallucinated results, both subjectively and objectively. In addition, the proposed framework is more robust to face misalignment and the SSS problem, and its hallucinated HR face is still very good when the LR test face is from the real world. The MATLAB source code is available at https://github.com/junjun-jiang/TLcR-RL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.