Abstract

Graphs are effective tools for modeling complex data. Setting out from two basic substructures, random walks and trees, we propose a new family of context-dependent random walk graph kernels and a new family of tree pattern graph matching kernels. In our context-dependent graph kernels, context information is incorporated into primary random walk groups. A multiple kernel learning algorithm with a proposed l1,2-norm regularization is applied to combine context-dependent graph kernels of different orders. This improves the similarity measurement between graphs. In our tree-pattern graph matching kernel, a quadratic optimization with a sparse constraint is proposed to select the correctly matched tree-pattern groups. This augments the discriminative power of the tree-pattern graph matching. We apply the proposed kernels to human action recognition, where each action is represented by two graphs which record the spatiotemporal relations between local feature vectors. Experimental comparisons with state-of-the-art algorithms on several benchmark datasets demonstrate the effectiveness of the proposed kernels for recognizing human actions. It is shown that our kernel based on tree-pattern groups, which have more complex structures and exploit more local topologies of graphs than random walks, yields more accurate results but requires more runtime than the context-dependent walk graph kernel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.