Abstract
The context-dependence of extinction learning has been well studied and requires the hippocampus. However, the underlying neural mechanisms are still poorly understood. Using memory-driven reinforcement learning and deep neural networks, we developed a model that learns to navigate autonomously in biologically realistic virtual reality environments based on raw camera inputs alone. Neither is context represented explicitly in our model, nor is context change signaled. We find that memory-intact agents learn distinct context representations, and develop ABA renewal, whereas memory-impaired agents do not. These findings reproduce the behavior of control and hippocampal animals, respectively. We therefore propose that the role of the hippocampus in the context-dependence of extinction learning might stem from its function in episodic-like memory and not in context-representation per se. We conclude that context-dependence can emerge from raw visual inputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.