Abstract

Data envelopment analysis (DEA) is a methodology for identifying the efficient frontier of decision making units (DMUs). Context-dependent DEA refers to a DEA approach where a set of DMUs are evaluated against a particular evaluation context. Each evaluation context represents an efficient frontier composed by DMUs in a specific performance level. The context-dependent DEA measures (i) the attractiveness when DMUs exhibiting poorer performance are chosen as the evaluation context, and (ii) the progress when DMUs exhibiting better performance are chosen as the evaluation context. The current paper extends the context-dependent DEA by incorporating value judgment into the attractiveness and progress measures. The method is applied to measuring the attractiveness of 32 computer printers. It is shown that the attractive measure helps (i) customers to select the best option, and (ii) printer manufacturers to identify the potential competitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.