Abstract

Various techniques have been developed for identifying the most probable interactants of a protein under a given biological context. In this article, we dissect the effects of the choice of the protein–protein interaction network (PPI) and the manipulation of PPI settings on the network neighborhood of the influenza A virus (IAV) network, as well as hits in genome-wide small interfering RNA screen results for IAV host factors. We investigate the potential of context filtering, which uses text mining evidence linked to PPI edges, as a complement to the edge confidence scores typically provided in PPIs for filtering, for obtaining more biologically relevant network neighborhoods. Here, we estimate the maximum performance of context filtering to isolate a Kyoto Encyclopedia of Genes and Genomes (KEGG) network Ki from a union of KEGG networks and its network neighborhood. The work gives insights on the use of human PPIs in network neighborhood approaches for functional inference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.