Abstract

Accidental falls are some of the most common sources of injury among the elderly. A fall is particularly critical when the elderly person is injured and cannot call for help. This problem is addressed by many fall-detection systems, but they often focus on isolated falls under restricted conditions, not paying enough attention to complex, real-life situations. To achieve robust performance in real life, a combination of body-worn inertial and location sensors for fall detection is studied in this paper. A novel context-based method that exploits the information from the both types of sensors is designed. It considers body accelerations, location and elementary activities to detect a fall. The recognition of the activities is of great importance and also is the most demanding of the three, thus it is treated as a separate task. The evaluation is performed on a real-life sce- nario, including fast falls, slow falls and fall-like situations that are difficult to distinguish from falls. All possible combinations of six inertial and four location sensors are tested. The results show that: (i) context-based reasoning significantly improves the performance; (ii) a combination of two types of sensors in a single physical sensor enclosure is the best practical solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.