Abstract
In context-aware route planning, there is a set of transportation agents each with a start and destination location on a shared infrastructure. Each agent wants to find a shortest-time route plan without colliding with any of the other agents, or ending up in a deadlock situation. We present a single-agent route planning algorithm that is both optimal and conflict-free. We also present a set of experiments that compare our algorithm to finding a conflict-free schedule along a fixed path. In particular, we will compare our algorithm to the approach where the shortest conflict-free schedule is chosen along one of k shortest paths. Although neither approach can guarantee optimality with regard to the total set of agent route plans -- and indeed examples can be constructed to show that either approach can outperform the other -- our experiments show that our approach consistently outperforms fixed-path scheduling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.