Abstract

This paper focuses on fine-grained object classification using recognized scene text in natural images. While the state-of-the-art relies on visual cues only, this paper is the first work which proposes to combine textual and visual cues. Another novelty is the textual cue extraction. Unlike the state-of-the-art text detection methods, we focus more on the background instead of text regions. Once text regions are detected, they are further processed by two methods to perform text recognition, i.e., ABBYY commercial OCR engine and a state-of-the-art character recognition algorithm. Then, to perform textual cue encoding, bi- and trigrams are formed between the recognized characters by considering the proposed spatial pairwise constraints. Finally, extracted visual and textual cues are combined for fine-grained classification. The proposed method is validated on four publicly available data sets: ICDAR03, ICDAR13, Con-Text, and Flickr-logo. We improve the state-of-the-art end-to-end character recognition by a large margin of 15% on ICDAR03. We show that textual cues are useful in addition to visual cues for fine-grained classification. We show that textual cues are also useful for logo retrieval. Adding textual cues outperforms visual- and textual-only in fine-grained classification (70.7% to 60.3%) and logo retrieval (57.4% to 54.8%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.