Abstract

Everyday auditory streams are complex, including spectro-temporal content that varies at multiple timescales. Using EEG, we investigated the sensitivity of human auditory cortex to the content of past stimulation in unattended sequences of equiprobable tones. In 3 experiments including 82 participants overall, we found that neural responses measured at different latencies after stimulus onset were sensitive to frequency intervals computed over distinct timescales. Importantly, early responses were sensitive to a longer history of stimulation than later responses. To account for these results, we tested a model consisting of neural populations with frequency-specific but broad tuning that undergo adaptation with exponential recovery. We found that the coexistence of neural populations with distinct recovery rates can explain our results. Furthermore, the adaptation bandwidth of these populations depended on spectral context-it was wider when the stimulation sequence had a wider frequency range. Our results provide electrophysiological evidence as well as a possible mechanistic explanation for dynamic and multiscale context-dependent auditory processing in the human cortex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.