Abstract

The code length of a source can be reduced effectively by using conditional probability distributions in a context model. However, the larger the size of the context model, the more difficult the estimation of the conditional probability distributions in the model by using the counting statistics from the source symbols. In order to deal with this problem, a hierarchical clustering based context quantization algorithm is used to combine the conditional probability distributions in the context model to minimize the description length. The simulation results show that it is a good method for quantizing the context model. Meanwhile, the initial cluster centers and the number of classes do not need to be determined in advance any more. Thus, it can greatly simplify the quantizer design for the context quantization problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.