Abstract

We studied the dependence of the rate of short deletions and insertions on their contexts using the data on mutations within coding exons at 19 human loci that cause mendelian diseases. We confirm that periodic sequences consisting of three to five or more nucleotides are mutagenic. Mutability of sequences with strongly biased nucleotide composition is also elevated, even when mutations within homonucleotide runs longer than three nucleotides are ignored. In contrast, no elevated mutation rates have been detected for imperfect direct or inverted repeats. Among known candidate contexts, the indel context GTAAGT and regions with purine-pyrimidine imbalance between the two DNA strands are mutagenic in our sample, and many others are not mutagenic. Data on mutation hot spots suggest two novel contexts that increase the deletion rate. Comprehensive analysis of mutability of all possible contexts of lengths four, six, and eight indicates a substantially elevated deletion rate within YYYTG and similar sequences, which is one of the two contexts revealed by the hot spots. Possible contexts that increase the insertion rate (AT(A/C)(A/C)GCC and TACCRC) and decrease deletion (TATCGC) or insertion (GCGG) rates have also been identified. Two-thirds of deletions remove a repeat, and over 80% of insertions create a repeat, i.e., they are duplications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.