Abstract
Two semigroups are called strongly Morita equivalent if they are contained in a Morita context with unitary bi-acts and surjective mappings. We consider the notion of context equivalence which is obtained from the notion of strong Morita equivalence by dropping the requirement of unitariness. We show that context equivalence is an equivalence relation on the class of factorisable semigroups and describe factorisable semigroups that are context equivalent to monoids or groups, and semigroups with weak local units that are context equivalent to inverse semigroups, orthodox semigroups or semilattices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.