Abstract
This paper presents a scalable scene parsing algorithm based on image retrieval and superpixel matching. We focus on rare object classes, which play an important role in achieving richer semantic understanding of visual scenes, compared to common background classes. Towards this end, we make two novel contributions: rare class expansion and semantic context description. First, considering the long-tailed nature of the label distribution, we expand the retrieval set by rare class exemplars and thus achieve more balanced superpixel classification results. Second, we incorporate both global and local semantic context information through a feedback based mechanism to refine image retrieval and superpixel matching. Results on the SIFTflow and LMSun datasets show the superior performance of our algorithm, especially on the rare classes, without sacrificing overall labeling accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.