Abstract

BackgroundGene discovery algorithms typically examine sequence data for low level patterns. A novel method to computationally discover higher order DNA structures is presented, using a context sensitive grammar. The algorithm was applied to the discovery of gene cassettes associated with integrons. The discovery and annotation of antibiotic resistance genes in such cassettes is essential for effective monitoring of antibiotic resistance patterns and formulation of public health antibiotic prescription policies.ResultsWe discovered two new putative gene cassettes using the method, from 276 integron features and 978 GenBank sequences. The system achieved κ = 0.972 annotation agreement with an expert gold standard of 300 sequences. In rediscovery experiments, we deleted 789,196 cassette instances over 2030 experiments and correctly relabelled 85.6% (α ≥ 95%, E ≤ 1%, mean sensitivity = 0.86, specificity = 1, F-score = 0.93), with no false positives.Error analysis demonstrated that for 72,338 missed deletions, two adjacent deleted cassettes were labeled as a single cassette, increasing performance to 94.8% (mean sensitivity = 0.92, specificity = 1, F-score = 0.96).ConclusionUsing grammars we were able to represent heuristic background knowledge about large and complex structures in DNA. Importantly, we were also able to use the context embedded in the model to discover new putative antibiotic resistance gene cassettes. The method is complementary to existing automatic annotation systems which operate at the sequence level.

Highlights

  • Gene discovery algorithms typically examine sequence data for low level patterns

  • We were able to use the context embedded in the model to discover new putative antibiotic resistance gene cassettes

  • The task of annotating integrons may be supported by several classes of computational tools: We evaluate this approach on the task of discovering bacterial gene cassettes associated with class 1, 2 and 3 integrons [19]

Read more

Summary

Introduction

Gene discovery algorithms typically examine sequence data for low level patterns. The algorithm was applied to the discovery of gene cassettes associated with integrons. The discovery and annotation of antibiotic resistance genes in such cassettes is essential for effective monitoring of antibiotic resistance patterns and formulation of public health antibiotic prescription policies. Computational methods for discovering DNA functions typically seek similarities with sequences of known genes [1,2,3,4]. For example, were initially identified from repeated manual observations of a similar sequence pattern (restriction enzyme digestion sites) flanking a variety of antibiotic resistance genes [14]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call