Abstract

Insulators are DNA elements that divide chromosomes into independent transcriptional domains. The Drosophila genome contains hundreds of binding sites for the Suppressor of Hairy-wing [Su(Hw)] insulator protein, corresponding to locations of the retroviral gypsy insulator and non-gypsy binding regions (BRs). The first non-gypsy BR identified, 1A-2, resides in cytological region 1A. Using a quantitative transgene system, we show that 1A-2 is a composite insulator containing enhancer blocking and facilitator elements. We discovered that 1A-2 separates the yellow (y) gene from a previously unannotated, non-coding RNA gene, named yar for y-achaete (ac) intergenic RNA. The role of 1A-2 was elucidated using homologous recombination to excise these sequences from the natural location, representing the first deletion of any Su(Hw) BR in the genome. Loss of 1A-2 reduced yar RNA accumulation, without affecting mRNA levels from the neighboring y and ac genes. These data indicate that within the 1A region, 1A-2 acts an activator of yar transcription. Taken together, these studies reveal that the properties of 1A-2 are context-dependent, as this element has both insulator and enhancer activities. These findings imply that the function of non-gypsy Su(Hw) BRs depends on the genomic environment, predicting that Su(Hw) BRs represent a diverse collection of genomic regulatory elements.

Highlights

  • In eukaryotic genomes, neighboring genes often display distinct spatial and temporal patterns of transcription, even though intergenic distances are within the range of enhancer and silencer action

  • Su(Hw) associates with hundreds of non-gypsy regions distributed throughout the genome that differ in sequence and organization from the gypsy insulator

  • We show that 1A-2 is an insulator in enhancer blocking studies but functions as a transcriptional activator within the natural genomic location

Read more

Summary

Introduction

In eukaryotic genomes, neighboring genes often display distinct spatial and temporal patterns of transcription, even though intergenic distances are within the range of enhancer and silencer action. These observations suggest that constraints exist that limit promiscuous interactions between long distance regulatory elements and non-target promoters. Sequences with one or both of these properties have been identified in most eukaryotic genomes and have been implicated in the regulation of diverse cellular processes, ranging from centromere function in yeast to imprinting in mammals [6,7]. These observations imply that insulators are fundamental components of eukaryotic genomes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.