Abstract

Sensory systems process stimuli that greatly vary in intensity and complexity. To maintain efficient information transmission, neural systems need to adjust their properties to these different sensory contexts, yielding adaptive or stimulus-dependent codes. Here, we demonstrated adaptive spectrotemporal tuning in a small neural network, i.e. the peripheral auditory system of the cricket. We found that tuning of cricket auditory neurons was sharper for complex multi-band than for simple single-band stimuli. Information theoretical considerations revealed that this sharpening improved information transmission by separating the neural representations of individual stimulus components. A network model inspired by the structure of the cricket auditory system suggested two putative mechanisms underlying this adaptive tuning: a saturating peripheral nonlinearity could change the spectral tuning, whereas broad feed-forward inhibition was able to reproduce the observed adaptive sharpening of temporal tuning. Our study revealed a surprisingly dynamic code usually found in more complex nervous systems and suggested that stimulus-dependent codes could be implemented using common neural computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.