Abstract

People often express opinions towards others in a social network, causing sentiment links to form among users. To develop effective methods for discovering implicit sentiment links among users, the extraction and exploitation of structural semantic information from heterogeneous social networks are of great importance. We propose a novel heterogeneous social network embedding-based approach for sentiment link prediction that takes both global structural information with multi-dimensional relations and heterogeneous context information into consideration to leverage rich and intrinsic association information. Specifically, the attributed heterogeneous social network and Sentic LSTM-based sentiment link network are employed to incorporate various explicit context knowledge and implicit multi-dimensional user interaction association knowledge into representation learning and sentiment link prediction. The experimental results on a real-world dataset show that the proposed approach has advantages over the state-of-the-art baselines. The results show the effectiveness of incorporating social relations and profile context information into sentiment link prediction, especially in cold-start scenarios. The learned embedding representation that incorporates both structural information with multi-dimensional relations and context information from heterogeneous social networks can improve sentiment link prediction performance. The proposed approach is effective and feasible for detecting unobserved sentiment links from online social networks and outperforms the state-of-the-art baselines in sentiment link prediction tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.