Abstract

Data centers are often equipped with multiple cooling units. Here, an aquifer thermal energy storage (ATES) system has shown to be efficient. However, the usage of hot and cold-water wells in the ATES must be balanced for legal and environmental reasons. Reinforcement Learning has been proven to be a useful tool for optimizing the cooling operation at data centers. Nonetheless, since cooling demand changes continuously, balancing the ATES usage on a yearly basis imposes an additional challenge in the form of a delayed reward. To overcome this, we formulate a return decomposition, Cool-RUDDER, which relies on simple domain knowledge and needs no training. We trained a proximal policy optimization agent to keep server temperatures steady while minimizing operational costs. Comparing the Cool-RUDDER reward signal to other ATES-associated rewards, all models kept the server temperatures steady at around 30 °C. An optimal ATES balance was defined to be 0% and a yearly imbalance of −4.9% with a confidence interval of [−6.2, −3.8]% was achieved for the Cool 2.0 reward. This outperformed a baseline ATES-associated reward of 0 at −16.3% with a confidence interval of [−17.1, −15.4]% and all other ATES-associated rewards. However, the improved ATES balance comes with a higher energy consumption cost of 12.5% when comparing the relative cost of the Cool 2.0 reward to the zero reward, resulting in a trade-off. Moreover, the method comes with limited requirements and is applicable to any long-term problem satisfying a linear state-transition system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call