Abstract

Local image features are often used to efficiently represent image content. The limited number of types of features that a local feature extractor responds to might be insufficient to provide a robust image representation. To overcome this limitation, we propose a context-aware feature extraction formulated under an information theoretic framework. The algorithm does not respond to a specific type of features; the idea is to retrieve complementary features which are relevant within the image context. We empirically validate the method by investigating the repeatability, the completeness, and the complementarity of context-aware features on standard benchmarks. In a comparison with strictly local features, we show that our context-aware features produce more robust image representations. Furthermore, we study the complementarity between strictly local features and context-aware ones to produce an even more robust representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.