Abstract
Driving risk prediction is crucial for safety and risk mitigation. While traditional methods rely on demographic information for insurance pricing, they may not fully capture actual driving behavior. To address this, telematics data has gained popularity. This study focuses on using telematics data and contextual information (e.g., road type, daylight) to represent a driver’s style through tensor representations. Drivers with similar behaviors are identified by clustering their representations, forming risk cohorts. Past at-fault traffic accidents and citations serve as partial risk labels. The relative magnitude of average records (per driver) for each cohort indicates their risk label, such as low or high risk, which can be transferred to drivers in a cohort. A classifier is then constructed using augmented risk labels and driving style representations to predict driving risk for new drivers. Real-world data from major US cities validates the effectiveness of this framework. The approach is practical for large-scale scenarios as the data can be obtained at scale. Its focus on driver-based risk prediction makes it applicable to industries like auto-insurance. Beyond personalized premiums, the framework empowers drivers to assess their driving behavior in various contexts, facilitating skill improvement over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.