Abstract

Abstract In many industrial or healthcare contexts, keeping track of the number of people is essential. Radar systems, with their low overall cost and power consumption, enable privacy-friendly monitoring in many use cases. Yet, radar data are hard to interpret and incompatible with most computer vision strategies. Many current deep learning-based systems achieve high monitoring performance but are strongly context-dependent. In this work, we show how context generalization approaches can let the monitoring system fit unseen radar scenarios without adaptation steps. We collect data via a 60 GHz frequency-modulated continuous wave in three office rooms with up to three people and preprocess them in the frequency domain. Then, using meta learning, specifically the Weighting-Injection Net, we generate relationship scores between the few training datasets and query data. We further present an optimization-based approach coupled with weighting networks that can increase the training stability when only very few training examples are available. Finally, we use pool-based sampling active learning to fine-tune the model in new scenarios, labeling only the most uncertain data. Without adaptation needs, we achieve over 80% and 70% accuracy by testing the meta learning algorithms in new radar positions and a new office, respectively. Graphical abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.