Abstract
Local dispersion dominates the mixing of compounds that are introduced separately into the subsurface and do not partition into any other than the aqueous phase. Thus, reactions between these compounds are controlled by dispersive mixing if they are not limited by kinetics. I quantify longitudinal dispersive mixing by the longitudinal effective dispersion coefficient of a conservative tracer introduced by a point-like injection [Water Resour. Res. 36 (12) (2000) 3591–3604]. In the upscaling of mixing-controlled reactive transport, I apply the mean velocity and the effective dispersion coefficient to the macroscopic transport calculations, whereas the reactive parameters on the macro-scale are identical to those on the local scale. The applicability of the approach is demonstrated for the transport of compounds undergoing a second-order irreversible bimolecular reaction. Ten realizations of a two-dimensional heterogeneous log-conductivity field are considered. Using the effective dispersion parameters, the overall mass balance is met in the ensemble average, whereas solute spreading is underestimated. I assess the lack of spreading by the difference between the expected macrodispersion and effective dispersion coefficients. I extend the approach to simulations on log-conductivity fields obtained by kriging of regularly spaced conductivity measurements. These fields contain the large-scale features of the true fields but do not resolve the small-scale variability. For the calculations on the kriged fields, the corresponding conditional covariance is substituted into the analytical expressions of effective dispersion, yielding a correction effective dispersion coefficient. The comparison between simulations on the fully resolved fields and on the kriged fields indicates that the approach is valid for wide plumes meeting the ergodicity condition. The high variability of mixing on small scales unresolved by kriging, however, leads to severe uncertainty when mixing-controlled reactions are predicted for narrow plumes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.