Abstract

With the recent tremendous increase in the volume of Web 3.0 content, content recommendation systems (CRS) have emerged as an important aspect of social network services and computing. Thus, several studies have been conducted to investigate content recommendation methods (CRM) for CRSs. However, traditional CRMs are limited in that they cannot be used in the Web 3.0 environment. In this paper, we propose a novel way to recommend high-quality web content using degree of centrality and term frequency---inverse document frequency (TF---IDF). In the proposed method, we analyze the TF---IDF and degree of centrality of collected RDF site summary and friend-of-a-friend data and then generate content recommendations based on these two analyzed values. Results from the implementation of the proposed system indicate that it provides more appropriate and reliable contents than traditional CRSs. The proposed system also reflects the importance of the role of content creators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.