Abstract

This paper presents a content-centric transmission design in a cloud radio access network (cloud RAN) by incorporating multicasting and caching. Users requesting a same content form a multicast group and are served by a same cluster of base stations (BSs) cooperatively. Each BS has a local cache and it acquires the requested contents either from its local cache or from the central processor (CP) via backhaul links. We investigate the dynamic content-centric BS clustering and multicast beamforming with respect to both channel condition and caching status. We first formulate a mixed-integer nonlinear programming problem of minimizing the weighted sum of backhaul cost and transmit power under the quality-of-service constraint for each multicast group. Theoretical analysis reveals that all the BSs caching a requested content can be included in the BS cluster of this content, regardless of the channel conditions. Then we reformulate an equivalent sparse multicast beamforming (SBF) problem. By adopting smoothed $\ell_0$-norm approximation and other techniques, the SBF problem is transformed into the difference of convex (DC) programs and effectively solved using the convex-concave procedure algorithms. Simulation results demonstrate significant advantage of the proposed content-centric transmission. The effects of three heuristic caching strategies are also evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call