Abstract

BackgroundWe introduced a series of computer-supported workshops in our undergraduate statistics courses, in the hope that it would help students to gain a deeper understanding of statistical concepts. This raised questions about the appropriate design of the Virtual Learning Environment (VLE) in which such an approach had to be implemented. Therefore, we investigated two competing software design models for VLEs. In the first system, all learning features were a function of the classical VLE. The second system was designed from the perspective that learning features should be a function of the course's core content (statistical analyses), which required us to develop a specific–purpose Statistical Learning Environment (SLE) based on Reproducible Computing and newly developed Peer Review (PR) technology.ObjectivesThe main research question is whether the second VLE design improved learning efficiency as compared to the standard type of VLE design that is commonly used in education. As a secondary objective we provide empirical evidence about the usefulness of PR as a constructivist learning activity which supports non-rote learning. Finally, this paper illustrates that it is possible to introduce a constructivist learning approach in large student populations, based on adequately designed educational technology, without subsuming educational content to technological convenience.MethodsBoth VLE systems were tested within a two-year quasi-experiment based on a Reliable Nonequivalent Group Design. This approach allowed us to draw valid conclusions about the treatment effect of the changed VLE design, even though the systems were implemented in successive years. The methodological aspects about the experiment's internal validity are explained extensively.ResultsThe effect of the design change is shown to have substantially increased the efficiency of constructivist, computer-assisted learning activities for all cohorts of the student population under investigation. The findings demonstrate that a content–based design outperforms the traditional VLE–based design.

Highlights

  • In recent years, there has been a lot of interest in Computer Assisted Learning (CAL) in the academic community [1]

  • The findings demonstrate that a content–based design outperforms the traditional Virtual Learning Environment (VLE)–based design

  • As explained in the Materials and Methods section, we have provided a list of arguments and analysis to support statistical equivalence between both experimental groups

Read more

Summary

Introduction

There has been a lot of interest in Computer Assisted Learning (CAL) in the academic community [1]. Take the system design of the Virtual Learning Environment (VLE) for granted – for example the study by Stricker, Weibel and Wissmath [2] investigated the impact of the VLE on learning outcomes without considering the possibility that software design may play a role of importance This is surprising because the efficiency of CAL may be strongly influenced by the VLE’s design [3] which is typically beyond the control of the educator. We introduced a series of computer-supported workshops in our undergraduate statistics courses, in the hope that it would help students to gain a deeper understanding of statistical concepts This raised questions about the appropriate design of the Virtual Learning Environment (VLE) in which such an approach had to be implemented. The second system was designed from the perspective that learning features should be a function of the course’s core content (statistical analyses), which required us to develop a specific–purpose Statistical Learning Environment (SLE) based on Reproducible Computing and newly developed Peer Review (PR) technology

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call