Abstract
An increasing number of articles are published electronically in the scientific literature, but access is limited to alphanumerical search on title, author, or abstract, and may disregard numerous figures. In this paper, we estimate the benefits of using content-based image retrieval (CBIR) on article figures to augment traditional access to articles. We selected four high-impact journals from the Journal Citations Report (JCR) 2005. Figures were automatically extracted from the PDF article files, and manually classified on their content and number of sub-figure panels. We make a quantitative estimate by projecting from data from the Cross-Language Evaluation Forum (ImageCLEF) campaigns, and qualitatively validate it through experiments using the Image Retrieval in Medical Applications (IRMA) project. Based on 2077 articles with 11,753 pages, 4493 figures, and 11,238 individual images, the predicted accuracy for article retrieval may reach 97.08%. Therefore, CBIR potentially has a high impact in medical literature search and retrieval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.