Abstract
The volume of audio data is increasing tremendously daily on public networks like Internet. This increases the difficulty in accessing those audio data. Hence, there is a need of efficient indexing and annotation mechanisms. Non-stationarity and discontinuity present in the audio signal rise the difficulty in segmentation and classification of audio signals. The other challenging task is to extract and select the optimal features in audio signal. The application areas of audio classification and retrieval system include speaker recognition, gender classification, music genre classification, environment sound classification, etc. This paper proposes a machine learning- and neural network-based approach which performs audio pre-processing, segmentation, feature extraction, classification and retrieval of audio signal from the dataset. We have proposed novel approach of classification and retrieval using FPNN by combining fuzzy logic and PNN characteristics. We found that FPNN classifier gives better accuracy, F1-score and Kappa coefficient values compared to SVM, k-NN and PNN classifiers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.