Abstract

Digitalizing indoor scenes into a 3D virtual world enables people to visit and roam in their daily-life environments through remote devices. However, reconstructing indoor geometry with enriched semantics (e.g. the room layout, object category and support relationship) requires computers to parse and holistically understand the scene context, which is challenging considering the complexity and clutter of our living surroundings. However, with the rising development of deep learning techniques, modeling indoor scenes from single RGB images has been available. In this chapter, we introduce an automatic method for semantic indoor scene modeling based on deep convolutional features. Specifically, we decouple the task of indoor scene modeling into different hierarchies of scene understanding subtasks to parse semantic and geometric contents from scene images (i.e. object masks, scene depth map and room layout). Above these semantic and geometric contents, we deploy a data-driven support relation inference to estimate the physical contact between indoor objects. Under the support context, we adopt an image-CAD matching strategy to retrieve an indoor scene from global searching to local fine-tuning. The experiments show that this method can retrieve CAD models efficiently with enriched semantics, and demonstrate its feasibility in handling serious object occlusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.