Abstract

Nonlocal methods have shown great potential in many image restoration tasks including compressive sensing (CS) reconstruction through use of image self-similarity prior. However, they are still limited in recovering fine-scale details and sharp features, when rich repetitive patterns cannot be guaranteed; moreover the CS measurements are corrupted. In this paper, we propose a novel CS recovery algorithm that combines nonlocal sparsity with local and global prior, which soften and complement the self-similarity assumption for irregular structures. First, a Laplacian scale mixture (LSM) prior is utilized to model dependencies among similar patches. For achieving group sparsity, each singular value of similar packed patches is modeled as a Laplacian distribution with a variable scale parameter. Second, a global prior and a compensation-based sparsity prior of local patch are designed in order to maintain differences between packed patches. The former refers to a prediction which integrates the information at the independent processing stage and is used as side information, while the latter enforces a small (i.e., sparse) prediction error and is also modeled with the LSM model so as to obtain local sparsity. Afterward, we derive an efficient algorithm based on the expectation-maximization (EM) and approximate message passing (AMP) frame for the maximum a posteriori (MAP) estimation of the sparse coefficients. Numerical experiments show that the proposed method outperforms many CS recovery algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.