Abstract
The chemical content of polyphenylene sulfide (PPS) based composite with specified physical–mechanical properties is determined in the study with the use of experimental data on the dependence of effective properties (volumetric wear, elastic modulus, elongation at break, etc.) versus the values of control parameters. The latter are degree of filling with (i) Short Carbon Fibers (SCF) of ∼70 µm long and (ii) Chopped Carbon Fibers (CCF) ∼2 mm long. After the required number of experimental reference points has been determined the technique for data supplementation up to a regular numerical array with the use of linear interpolation is employed. The obtained dependences of the effective properties versus the control parameter values are constructed in the form of surfaces and corresponding isolines. At the contour plots, a region with the required effective properties is then highlighted. Since the regions overlap each other, their intersection determines the allowable control parameters range that impart the required values to the effective properties. The possibility to design filled polymer materials with a complex of predefined strain-strength and tribological properties is demonstrated. The experimental results are used to gain the reference points in contrast to the previously used approach when a set of computational experiment data were employed. On the one hand, the combination of a full-scale laboratory and computational experiments makes the process of modeling and design materials more evident, clear and reasonable from a physical point of view. On the other hand, it allows to interpret the results as more reliable, as well as less time and material consuming.The chemical content of polyphenylene sulfide (PPS) based composite with specified physical–mechanical properties is determined in the study with the use of experimental data on the dependence of effective properties (volumetric wear, elastic modulus, elongation at break, etc.) versus the values of control parameters. The latter are degree of filling with (i) Short Carbon Fibers (SCF) of ∼70 µm long and (ii) Chopped Carbon Fibers (CCF) ∼2 mm long. After the required number of experimental reference points has been determined the technique for data supplementation up to a regular numerical array with the use of linear interpolation is employed. The obtained dependences of the effective properties versus the control parameter values are constructed in the form of surfaces and corresponding isolines. At the contour plots, a region with the required effective properties is then highlighted. Since the regions overlap each other, their intersection determines the allowable control parameters range that impart t...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.