Abstract

Let $R$ be an integral domain with quotient field $K$, and let $X$ be an indeterminate over $R$. In this paper, we consider content formulae for power series in terms of $*$-operations for PVMDs, Krull domains and Dedekind domains, where $*$ is the star-operation, $d$, $w$, $t$, or $v$. We prove that $R$ is a Krull domain if and only if $c(f/g)_w=(c(f)c(g)^{-1})_w$ for all $f,g\in R[[X]]^*$ with $c(f/g)$ a fractional ideal if and only if $c(f/g)_t=(c(f)c(g)^{-1})_t$ for all $f,g\in R[[X]]^*$ with $c(f/g)$ a fractional ideal, and $R$ is a Dedekind domain if and only if for all $f,g\in R[[X]]^*$ with $c(f/g)$ a fractional ideal, $c(f/g)=c(f)c(g)^{-1}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.