Abstract

Fog Computing (FC) based IoT applications are encountering a bottleneck in the data management and resource optimization due to the dynamic IoT topologies, resource-limited devices, resource diversity, mismatching service quality, and complicated service offering environments. Existing problems and emerging demands of FC based IoT applications are hard to be met by traditional IP-based Internet model. Therefore, in this paper, we focus on the Content-Centric Network (CCN) model to provide more efficient, flexible, and reliable data and resource management for fog-based IoT systems. We first propose a Deep Reinforcement Learning (DRL) algorithm that jointly considers the content type and status of fog servers for content-centric data and computation offloading. Then, we introduce a novel virtual layer called FogOrch that orchestrates the management and performance requirements of fog layer resources in an efficient manner via the proposed DRL agent. To show the feasibility of FogOrch, we develop a content-centric data offloading scheme (DRLOS) based on the DRL algorithm running on FogOrch. Through extensive simulations, we evaluate the performance of DRLOS in terms of total reward, computational workload, computation cost, and delay. The results show that the proposed DRLOS is superior to existing benchmark offloading schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call