Abstract
High-speed internet has boosted clients’ traffic needs. Content caching on mobile edge computing (MEC) servers reduces traffic and latency. Caching with MEC faces difficulties such as user mobility, limited storage, varying user preferences, and rising video streaming needs. The current content caching techniques consider user mobility and content popularity to improve the experience. However, no present solution addresses user preferences and mobility, affecting caching decisions. We propose mobility- and user-preferences-aware caching for MEC. Using time series, the proposed system finds mobility patterns and groups nearby trajectories. Using cosine similarity and CF, we predict and cache user-requested content. CF predicts the popularity of grouped-based content to improve the cache hit ratio and reduce delay compared to baseline techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.