Abstract
The issue of SVMs parameter optimization with particle swarm optimization (pso) provide the optimum solution. This new classification approach may be an efficient alternative, in existing paradigms. PSO technique work with high dimensional datasets and mixed attribute data. The structure of the image is recognized through PSO technique which provide optimized parameter for SVM. This approach determines the performance of image classification after structural recognition based on content of image and comparing the obtained results with those reported for various other classification approaches. PSO-SVM technique can be applied mixed-attribute, hyperspectral data, hyperdimension spaces & problem description spaces and it can also be a competitive alternative to well established classification techniques. The optimized process of data reduces the unclassified region of support vector machine and improves the performance of image classification. The feature of region of image is classified by PSO-SVM technique in inside the image. Cassified features are increase recogniztion ratio because the feature of image is optimized. General Terms Pattern Recognition, high dimensional image classification et. al.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.