Abstract
This paper presents a content-based retrieval algorithm for motion capture data, which is required to re-use a large-scale database that has many variations in the same category of motions. The most challenging problem is that logically similar motions may not be numerically similar due to the motion variations in a category. Our algorithm can effectively retrieve logically similar motions to a query, where a distance metric between our novel short-term features is defined properly as a fundamental component in our system. We extract the features based on short-term analysis of joint velocities after dividing an entire motion capture sequence into many small overlapped clips. In each clip, we select not only the magnitude but also the dynamic pattern of the joint velocities as our features, which can discard the motion variations while keeping the significant motion information in a category. Simultaneously, the amount of data is reduced, alleviating the computational cost. Using the extracted features, we define a novel distance metric between two motion clips. By dynamic time warping, a motion dissimilarity measure is calculated between two motion capture sequences. Then, given a query, we rank all the motions in our dataset according to their motion dissimilarity measures. Our experiments, which are performed on a test dataset consisting of more than 190 motions, demonstrate that our algorithm greatly improves the performance compared to two conventional methods according to a popular evaluation measure P(NR).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEICE Transactions on Information and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.