Abstract

This paper presents a music recommendation system for the offline libraries of songs that employs the concepts of reinforcement learning to obtain satisfactory recommendations based on the various considered content-based parameters. In order to obtain insights about the effectiveness of the generated recommendations, parallel instances of single-play multi-arm bandit algorithms are maintained. In conjunction to this, the concepts of Bayesian learning are considered to model the user preferences, by assuming the environment’s reward generating process to be non-stationary and stochastic. The system is designed to be simple, easy to implement, and at-par with the user satisfaction, within the bounds of the input data capabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.