Abstract

AbstractAn innovative image retrieval agenda by concatenating deep learning features from GoogleNet and low‐level features from HSI and RGB color space is proposed in this article. Most of the CNN features suffer from loss of information due to image resize as a pre‐processing stage. To reduce this information loss super‐resolution technic is used for resizing images. An improved form of dot‐diffused block truncation coding is used for extracting RGB handcraft features. To discover the interdependencies between color and intensity component of an image, interchannel voting between hue, saturation, and intensity component is calculated as a color feature in HSI space. Histogram of orientated gradient (HOG) feature is used as shape feature. Five standard performance parameters, average precision rate, average recall rate, F‐Measure, Average Normalized Modified Retrieval Rank, and Total Minimum Retrieval Epoch, are applied on nine image datasets: Corel‐1K, Corel‐5K, Corel‐10K, VisTex, STex, ColorBrodatz and three subsets of ImageNet dataset for evaluation process of proposed method. For all dataset the best performance is achieved by the proposed method with respect to all performance parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.