Abstract
We have designed and implemented a human brain multi-modality database system with content-based image management, navigation and retrieval support for epilepsy. The system consists of several modules including a database backbone, brain structure identification and localization, segmentation, registration, visual feature extraction, clustering/classification and query modules. Our newly developed anatomical landmark localization and brain structure identification method facilitates navigation through an image data and extracts useful information for segmentation, registration and query modules. The database stores T1-, T2-weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data. We confine the visual feature extractors within anatomical structures to support semantically rich content-based procedures. The proposed system serves as a research tool to evaluate a vast number of hypotheses regarding the condition such as resection of the hippocampus with a relatively small volume and high average signal intensity on FLAIR. Once the database is populated, using data mining tools, partially invisible correlations between different modalities of data, modeled in database schema, can be discovered. The design and implementation aspects of the proposed system are the main focus of this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.