Abstract

Abstract Author co-citation analysis (ACA) has long been used as an effective method for identifying the intellectual structure of a research domain, but it relies on simple co-citation counting, which does not take the citation content into consideration. The present study proposes a new method for measuring the similarity between co-cited authors by considering author's citation content. We collected the full-text journal articles in the information science domain and extracted the citing sentences to calculate their similarity distances. We compared our method with traditional ACA and found out that our approach, while displaying a similar intellectual structure for the information science domain as the other baseline methods, also provides more details about the sub-disciplines in the domain than with traditional ACA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.